DUE: A-day Tuesday 09/22/15, B-day Wednesday 09/23/15

Pre-Calculus: Lesson 1.3 Graphs and Functions p. 38 #27-33 odd (sketch graph), 47, 51, 55, 57, 61-71 odd.

Please complete the assignment using the "tri-fold" method (You may use www.calcchat.com to check your work):

Increasing and Decreasing Functions In Exercises 27-34, (a) use a graphing utility to graph the function and (b) determine the open intervals on which the function is increasing, decreasing, or constant.

27.
$$f(x) = 3$$

28.
$$f(x) = x$$

29.
$$f(x) = x^{2/3}$$

30.
$$f(x) = -x^{3/4}$$

31.
$$f(x) = x\sqrt{x+3}$$

27.
$$f(x) = 3$$
 28. $f(x) = x$ **29.** $f(x) = x^{2/3}$ **30.** $f(x) = -x^{3/4}$ **31.** $f(x) = x\sqrt{x+3}$ **32.** $f(x) = \sqrt{1-x}$

33.
$$f(x) = |x + 1| + |x - 1|$$

34.
$$f(x) = -|x+4| - |x+1|$$

Library of Parent Functions In Exercises 47–52, sketch the graph of the function by hand. Then use a graphing utility to verify the graph.

47.
$$f(x) = [x] + 2$$
 48. $f(x) = [x] - 3$

48.
$$f(x) = [x] - 3$$

51.
$$f(x) = [2x]$$

Sketching a Piecewise-Defined Function In Exercises 55–62, sketch the graph of the piecewise-defined function by hand.

✓ 55.
$$f(x) = \begin{cases} 2x + 3, & x < 0 \\ 3 - x, & x \ge 0 \end{cases}$$

56. $f(x) = \begin{cases} x + 6, & x \le -4 \\ 2x - 4, & x > -4 \end{cases}$

57. $f(x) = \begin{cases} \sqrt{4 + x}, & x < 0 \\ \sqrt{4 - x}, & x \ge 0 \end{cases}$

58. $f(x) = \begin{cases} 1 - (x - 1)^2, & x \le 2 \\ \sqrt{x - 2}, & x > 2 \end{cases}$

59. $f(x) = \begin{cases} x + 3, & x \le 0 \\ 3, & 0 < x \le 2 \\ 2x - 1, & x > 2 \end{cases}$

60. $g(x) = \begin{cases} x + 5, & x \le -3 \\ -2, & -3 < x < 1 \\ 5x - 4, & x \ge 1 \end{cases}$

61. $f(x) = \begin{cases} 2x + 1, & x \le -1 \\ x^2 - 2, & x > -1 \end{cases}$

62. $h(x) = \begin{cases} 3 + x, & x < 0 \\ x^2 + 1, & x \ge 0 \end{cases}$

Even and Odd Functions In Exercises 63-72, use a graphing utility to graph the function and determine whether it is even, odd, or neither.

63.
$$f(x) = 5$$

64.
$$f(x) = -9$$

65.
$$f(x) = 3x - 2$$

66.
$$f(x) = 5 - 3x$$

67.
$$h(x) = x^2 - 4$$

68.
$$f(x) = -x^2 - 8$$

65.
$$f(x) = 3x - 2$$

67. $h(x) = x^2 - 4$
69. $f(x) = \sqrt{1-x}$

70.
$$g(t) = \sqrt[3]{t-1}$$

71.
$$f(x) = |x + 2|$$

71.
$$f(x) = |x + 2|$$
 72. $f(x) = -|x - 5|$