DUE: A-day Tuesday 09/28/15, B-day Wednesday 09/29/15

Pre-Calculus: Lesson 1.5 Combinations of Functions p. 56 #11-31 odd, & 41-49 odd.

Please complete the assignment using the "tri-fold" method (You may use <u>www.calcchat.com</u> to check your work):

Finding Arithmetic Combinations of Functions In Exercises 11–18, find (a) (f + g)(x), (b) (f - g)(x), (c) (fg)(x), and (d) (f/g)(x). What is the domain of f/g? 11. f(x) = x + 3, g(x) = x - 312. f(x) = 2x - 5, g(x) = 1 - x13. $f(x) = x^2$, g(x) = 1 - x14. f(x) = 2x - 5, g(x) = 515. $f(x) = x^2 + 5$, $g(x) = \sqrt{1 - x}$ 16. $f(x) = \sqrt{x^2 - 4}$, $g(x) = \frac{x^2}{x^2 + 1}$ 17. $f(x) = \frac{1}{x}$, $g(x) = \frac{1}{x^2}$

Evaluating an Arithmetic Combination of Functions In Exercises 19–32, evaluate the indicated function for $f(x) = x^2 - 1$ and g(x) = x - 2 algebraically. If possible, use a graphing utility to verify your answer.

19.	(f + g)(3)	20. $(f-g)(-2)$
21.	(f - g)(0)	22. $(f + g)(1)$
23.	(fg)(6)	24. $(fg)(-4)$
25.	(f/g)(-5)	26. $(f/g)(0)$
27.	(f - g)(2t)	28. $(f + g)(t - 4)$
29.	(fg)(-5t)	30. $(fg)(3t^2)$
31.	(f/g)(-t)	32. $(f/g)(t+2)$

Compositions of Functions In Exercises 41–44, find (a) $f \circ g$, (b) $g \circ f$, and, if possible, (c) $(f \circ g)(0)$.

✓ 41.
$$f(x) = x^2$$
, $g(x) = x - 1$
42. $f(x) = \sqrt[3]{x - 1}$, $g(x) = x^3 + 1$
✓ 43. $f(x) = 3x + 5$, $g(x) = 5 - x$
44. $f(x) = x^3$, $g(x) = \frac{1}{x}$

Finding the Domain of a Composite Function In Exercises 45–54, determine the domains of (a) f, (b) g, and (c) $f \circ g$. Use a graphing utility to verify your results.

✓ 45.
$$f(x) = \sqrt{x+4}$$
, $g(x) = x^2$
46. $f(x) = \sqrt{x+3}$, $g(x) = \frac{x}{2}$
47. $f(x) = x^2 + 1$, $g(x) = \sqrt{x}$
48. $f(x) = x^{1/4}$, $g(x) = x^4$
49. $f(x) = \frac{1}{x}$, $g(x) = x + 3$

Compositions of Functions In Exercises 41–44, find (a) $f \circ g$, (b) $g \circ f$, and, if possible, (c) $(f \circ g)(0)$.

✓ 41.
$$f(x) = x^2$$
, $g(x) = x - 1$
42. $f(x) = \sqrt[3]{x - 1}$, $g(x) = x^3 + 1$
✓ 43. $f(x) = 3x + 5$, $g(x) = 5 - x$
44. $f(x) = x^3$, $g(x) = \frac{1}{x}$

Finding the Domain of a Composite Function In Exercises 45–54, determine the domains of (a) f, (b) g, and (c) $f \circ g$. Use a graphing utility to verify your results.

✓ 45.
$$f(x) = \sqrt{x+4}$$
, $g(x) = x^2$
46. $f(x) = \sqrt{x+3}$, $g(x) = \frac{x}{2}$
47. $f(x) = x^2 + 1$, $g(x) = \sqrt{x}$
48. $f(x) = x^{1/4}$, $g(x) = x^4$
49. $f(x) = \frac{1}{x}$, $g(x) = x + 3$