Pre-Calculus: Lesson 1.6 Inverse Functions p. 67 \#7-29 odd

Please complete the assignment using the "tri-fold" method (You may use www.calcchat.com to check your work):

Procedures and Problem Solving

Finding Inverse Functions Informally In Exercises 7-14, find the inverse function of f informally. Verify that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.
$\sqrt{ }$ 7. $f(x)=6 x$
8. $f(x)=\frac{1}{3} x$
9. $f(x)=x+7$
10. $f(x)=x-3$
11. $f(x)=2 x+1$
12. $f(x)=(x-1) / 4$
13. $f(x)=\sqrt[3]{x}$
14. $f(x)=x^{5}$

Identifying Graphs of Inverse Functions In Exercises 15-18, match the graph of the function with the graph of its inverse function. [The graphs of the inverse functions are labeled (a), (b), (c), and (d).]
(a)

(b)

(c)

(d)

15.

16.

17.

18.

Verifying Inverse Functions Algebraically In Exercises 19-24, show that f and g are inverse functions algebraically. Use a graphing utility to graph f and g in the same viewing window. Describe the relationship between the graphs.
$\begin{array}{lll}\text { 19. } f(x)=x^{3}, \quad g(x)=\sqrt[3]{x} & \text { 20. } f(x)=\frac{1}{x}, \quad g(x)=\frac{1}{x}\end{array}$
21. $f(x)=\sqrt{x-4} ; \quad g(x)=x^{2}+4, x \geq 0$
22. $f(x)=9-x^{2}, \quad x \geq 0 ; \quad g(x)=\sqrt{9-x}$
123. $f(x)=1-x^{3}, \quad g(x)=\sqrt[3]{1-x}$
24. $f(x)=\frac{1}{1+x}, x \geq 0 ; \quad g(x)=\frac{1-x}{x}, 0<x \leq 1$

