DUE: A-day Tuesday 10/06/15, B-day Wednesday 10/07/15

Pre-Calculus: Lesson 1.6 Inverse Functions p. 67 #7-29 odd

Please complete the assignment using the "tri-fold" method (You may use <u>www.calcchat.com</u> to check your work):

Procedures and Problem Solving

Finding Inverse Functions Informally In Exercises 7–14, find the inverse function of f informally. Verify that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

\checkmark 7. $f(x) = 6x$	8. $f(x) = \frac{1}{3}x$
✓ 9. $f(x) = x + 7$	10. $f(x) = x - 3$
11. $f(x) = 2x + 1$	12. $f(x) = (x - 1)/4$
13. $f(x) = \sqrt[3]{x}$	14. $f(x) = x^5$

Identifying Graphs of Inverse Functions In Exercises 15–18, match the graph of the function with the graph of its inverse function. [The graphs of the inverse functions are labeled (a), (b), (c), and (d).]

Verifying Inverse Functions Algebraically In Exercises 19–24, show that f and g are inverse functions algebraically. Use a graphing utility to graph f and g in the same viewing window. Describe the relationship between the graphs.

19.
$$f(x) = x^3$$
, $g(x) = \sqrt[3]{x}$
20. $f(x) = \frac{1}{x}$, $g(x) = \frac{1}{x}$
21. $f(x) = \sqrt{x-4}$; $g(x) = x^2 + 4$, $x \ge 0$
22. $f(x) = 9 - x^2$, $x \ge 0$; $g(x) = \sqrt{9-x}$
23. $f(x) = 1 - x^3$, $g(x) = \sqrt[3]{1-x}$
24. $f(x) = \frac{1}{1+x}$, $x \ge 0$; $g(x) = \frac{1-x}{x}$, $0 < x \le 1$