Pre-Calculus: Lesson 2.3 Quadratic Functions p. 124 \#9,11, \#15-23 odd, 29, 37, 39, 43 and 47.

Please complete the assignment using the "tri-fold" method (You may use www.calcchat.com to check your work):

Procedures and Problem Solving

Long Division of Polynomials In Exercises 9-22, use long division to divide.
9. Divide $2 x^{2}+10 x+12$ by $x+3$.
10. Divide $5 x^{2}-17 x-12$ by $x-4$.
11. Divide $x^{4}+5 x^{3}+6 x^{2}-x-2$ by $x+2$.
12. Divide $x^{3}-4 x^{2}-17 x+6$ by $x-3$.
13. Divide $4 x^{3}-7 x^{2}-11 x+5$ by $4 x+5$.
14. Divide $2 x^{3}-3 x^{2}-50 x+75$ by $2 x-3$.
15. Divide $7 x^{3}+3$ by $x+2$.
16. Divide $8 x^{4}-5$ by $2 x+1$.
17. $\left(x+8+6 x^{3}+10 x^{2}\right) \div\left(2 x^{2}+1\right)$
18. $\left(1+3 x^{2}+x^{4}\right) \div\left(3-2 x+x^{2}\right)$
19. $\left(x^{3}-9\right) \div\left(x^{2}+1\right)$
20. $\left(x^{5}+7\right) \div\left(x^{3}-1\right)$

Using Synthetic Division In Exercises 23-32, use synthetic division to divide.
23. $\left(3 x^{3}-17 x^{2}+15 x-25\right) \div(x-5)$
29. $\left(x^{3}+512\right) \div(x+8)$

Verifying the Remainder Theorem In Exercises 37-42, write the function in the form $f(x)=(x-k) q(x)+r(x)$ for the given value of k. Use a graphing utility to demonstrate that $f(k)=r$.

Function
37. $f(x)=x^{3}-x^{2}-14 x+11$
38. $f(x)=15 x^{4}+10 x^{3}-6 x^{2}+14$

Function

39. $f(x)=x^{3}+3 x^{2}-2 x-14$
40. $f(x)=x^{3}+2 x^{2}-5 x-4$

Value of k

$$
k=4
$$

$$
k=-\frac{2}{3}
$$

Using the Remainder Theorem In Exercises 43-46, use the Remainder Theorem and synthetic division to evaluate the function at each given value. Use a graphing utility to verify your results.
'43. $f(x)=2 x^{3}-7 x+3$
(a) $f(1)$
(b) $f(-2)$
(c) $f\left(\frac{1}{2}\right)$
(d) $f(2)$

Using the Factor Theorem In Exercises 47-50, use synthetic division to show that x is a solution of the thirddegree polynomial equation, and use the result to factor the polynomial completely. List all the real solutions of the equation.

Polynomial Equation Value of x
47. $x^{3}-7 x+6=0 \quad x=2$

