DUE: A-day Tuesday 12/08/15, B-day Monday 12/07/15

Pre-Calculus: Lesson 3.2 Logarithmic Functions and their Graphs p. 199 #7-39 odd, #45-49 odd.

Please complete the assignment using the "tri-fold" method (You may use www.calcchat.com to check your work):

Procedures and Problem Solving

Rewriting Logarithmic Equations In Exercises 7–14, write the logarithmic equation in exponential form. For example, the exponential form of $\log_5 25 = 2$ is $5^2 = 25$.

7.
$$\log_4 64 = 3$$

9.
$$\log_7 \frac{1}{49} = -2$$

11.
$$\log_{32} 4 = \frac{2}{5}$$

13.
$$\log_2 \sqrt{2} = \frac{1}{2}$$

8.
$$\log_3 81 = 4$$

10.
$$\log_{10} \frac{1}{1000} = -3$$

12. $\log_{16} 8 = \frac{3}{4}$

12.
$$\log_{16} 8 = \frac{3}{4}$$

14.
$$\log_5 \sqrt[3]{25} = \frac{2}{3}$$

Rewriting Exponential Equations In Exercises 15–22, write the exponential equation in logarithmic form. For example, the logarithmic form of $2^3 = 8$ is $\log_2 8 = 3$.

15.
$$5^3 = 125$$

17.
$$81^{1/4} = 3$$

19.
$$6^{-2} = \frac{1}{36}$$

21.
$$g^a = 4$$

16.
$$8^2 = 64$$

18.
$$9^{3/2} = 27$$

20.
$$10^{-3} = 0.001$$

22.
$$n^t = 10$$

Evaluating Logarithms In Exercises 23-26, use the definition of logarithmic function to evaluate the function at the indicated value of x without using a calculator.

Function	Value
\checkmark 23. $f(x) = \log_2 x$	x = 16
24. $f(x) = \log_{16} x$	$x = \frac{1}{4}$
25. $g(x) = \log_{10} x$	$x = \frac{1}{1000}$
26. $g(x) = \log_{10} x$	x = 10,000

Evaluating Common Logarithms on a Calculator In Exercises 27-30, use a calculator to evaluate the function at the indicated value of x. Round your result to three decimal places.

Function Value
27.
$$f(x) = \log_{10} x$$
 $x = 345$
28. $f(x) = \log_{10} x$ $x = \frac{4}{5}$

Function Value
29.
$$h(x) = 6 \log_{10} x$$
 $x = 14.8$
30. $h(x) = 1.9 \log_{10} x$ $x = 4.3$

Using Properties of Logarithms In Exercises 31–36, solve the equation for x.

31.
$$\log_7 x = \log_7 9$$
 32. $\log_5 5 = x$ **33.** $\log_4 4^2 = x$ **34.** $\log_3 3^{-5} = x$

32.
$$\log_5 5 = x$$

33.
$$\log_4 4^2 = x$$

34.
$$\log_3 3^{-5} = x$$

35.
$$\log_8 x = \log_8 10^{-1}$$
 36. $\log_4 4^3 = x$

36.
$$\log_4 4^3 = x$$

Using Properties of Logarithms In Exercises 37–40, use the properties of logarithms to simplify the expression.

37.
$$\log_4 4^{3x}$$

39.
$$3 \log_2 \frac{1}{2}$$

40.
$$\frac{1}{4} \log_4 16$$

Sketching the Graph of a Logarithmic Function Exercises 45-50, find the domain, vertical asymptote, and x-intercept of the logarithmic function, and sketch its graph by hand.

45.
$$y = \log_2(x+2)$$
 46. $y = \log_2(x-1)$

46.
$$y = \log_2(x - 1)$$

47.
$$y = 1 + \log_2 x$$

48.
$$y = 2 - \log_2 x$$

49.
$$y = 1 + \log_2(x - 2)$$

50.
$$y = 2 + \log_2(x + 1)$$