\qquad

When a central angle intercepts an arc that has the same length as a radius of the circle, the measure of this angle is defined to be one radian.

The circumference of a circle is $2 \pi r$, where r is the length of a radius. There are 2π radians in one complete revolution about a point and one complete revolution equals 360°.

$$
2 \pi \text { radians }=360^{\circ} \quad \pi \text { radians }=180^{\circ} \quad 1 \text { radian } \approx 57.3^{\circ}
$$

Convert each degree measure to radian measure.
a. 120°
b. -245°
$\begin{array}{ll}\text { a. } \frac{\pi}{3} \text { radians } & \text { b. }-\frac{3 \pi}{4} \text { radians }\end{array}$

Convert each radian measure to degree measure.

Quadrant I if $0<\theta<\frac{\pi}{2}$
Quadrant II if $\frac{\pi}{2}<\theta<\pi$
Quadrant III if $\pi<\theta<\frac{3 \pi}{2}$
Quadrant IV if $\frac{3 \pi}{2}<\theta<2 \pi$

In which quadrant or on which axis does the terminal side of the angle lie?
a. $\frac{4 \pi}{3}$
b. $-\frac{5 \pi}{4}$
c. $\frac{9 \pi}{2}$

In which quadrant, or on which axis, does the terminal side of each angle lie? (Sketch each angle in standard position).

1. 150°
2. 210°
3. -60°
4. 180°
5. -240°
6. 540°
7. 2π
8. $\frac{\pi}{3}$
9. $\frac{3 \pi}{4}$
10. $\frac{7 \pi}{3}$
11. $\frac{5 \pi}{4}$
12. $\frac{10 \pi}{3}$

Convert each degree measure to radian measure.
13. 150°
14. 210°
15. 45°
16. 240°

Each radian measure to degree measure.
17. $\frac{\pi}{6}$
18. $\frac{\pi}{4}$
19. $\frac{5 \pi}{6}$
20. $\frac{7 \pi}{6}$

Finding Coterminal Angles In Exercises 25-28, determine two coterminal angles in radian measure (one positive and one negative) for each angle. (There are many correct answers).
/25. (a)

(b)

26. (a)

27. (a) $-\frac{9 \pi}{4}$
(b) $-\frac{2 \pi}{15}$
(b)

