When a central angle intercepts an arc that has the same length as a radius of the circle, the measure of this angle is defined to be one **radian**.

Convert each degree measure to radian measure.

Convert each radian measure to degree measure.

a. 120° b. -245° a.
$$\frac{\pi}{3}$$
 radians b. $-\frac{3\pi}{4}$ radians

In which quadrant or on which axis does the terminal side of the angle lie?

a.	4π	$b = 5\pi$		9π
	3	$0\frac{4}{4}$	$\frac{1}{2}$	2

6. 540°

In which quadrant, or on which axis, does the terminal side of each angle lie? (Sketch each angle in standard position).1. 150°2. 210°3. -60°4. 180°

5. -240°

7. 2*π*

8. $\frac{\pi}{3}$

13. 150°	14. 210°	15. 45°	16. 240°

Each radian measure to degree measure.

π	π	5π	7π
17. —	18. —	19. —	20. —
6	4	6	6

Finding Coterminal Angles In Exercises 25–28, determine two coterminal angles in radian measure (one positive and one negative) for each angle. (There are many correct answers).

