DUE: A-Day Monday 02/10/16, B-day Friday 02/11/16

Pre-Calculus: Lesson 4.2 Day 2 Trigonometric Functions: Unit Circle p.270, #13-21 odd, #23-29 odd, 33, 34, 35 and 47-50 ALL.

Please complete the assignment using the "tri-fold" method (You may use www.calcchat.com to check your work):

Finding a Point on the Unit Circle In Exercises 13–22, find the point (x, y) on the unit circle that corresponds to the real number t.

13.
$$t = \frac{\pi}{4}$$

14.
$$t = \frac{\pi}{3}$$

15.
$$t = \frac{7\pi}{6}$$

16.
$$t = \frac{5\pi}{4}$$

17.
$$t = \frac{2\pi}{3}$$

18.
$$t = \frac{5\pi}{3}$$

19.
$$t = \frac{3\pi}{2}$$

20.
$$t = \pi$$

21.
$$t = -\frac{7\pi}{4}$$

22.
$$t = -\frac{4\pi}{3}$$

Evaluating Sine, Cosine, and Tangent In Exercises 23–32, evaluate (if possible) the sine, cosine, and tangent of the real number.

23.
$$t = \frac{\pi}{4}$$

24.
$$t = \frac{\pi}{3}$$

25.
$$t = -\frac{7\pi}{4}$$

26.
$$t = -\frac{5\pi}{4}$$

27.
$$t = \frac{2\pi}{3}$$

28.
$$t = \frac{5\pi}{3}$$

29.
$$t = -\frac{5\pi}{3}$$

30.
$$t = \frac{11\pi}{6}$$

31.
$$t = -\frac{\pi}{6}$$

32.
$$t = -\frac{\pi}{4}$$

Evaluating Trigonometric Functions In Exercises 33–38, evaluate (if possible) the six trigonometric functions of the real number.

33.
$$t = 3\pi/4$$

34.
$$t = 5\pi/6$$

35.
$$t = \pi/2$$

36.
$$t = 3\pi/2$$

37.
$$t = -4\pi/3$$

38.
$$t = 7\pi/4$$

Using the Value of a Trigonometric Function In Exercises 47–52, use the value of the trigonometric function to evaluate the indicated functions.

47.
$$\sin t = \frac{1}{3}$$

48.
$$\cos t = -\frac{3}{4}$$

(a)
$$\sin(-t)$$

(a)
$$\cos(-t)$$

(b)
$$\csc(-t)$$

(b)
$$\sec(-t)$$

49.
$$\cos(-t) = -\frac{1}{5}$$

50.
$$\sin(-t) = \frac{3}{8}$$

(a)
$$\cos t$$

(a)
$$\sin t$$

(b)
$$sec(-t)$$

51.
$$\sin t = \frac{4}{5}$$

52.
$$\cos t = \frac{4}{5}$$

(a)
$$\sin(\pi - t)$$

(a)
$$\cos(\pi - t)$$

(b)
$$\sin(t + \pi)$$

(b)
$$\cos(t + \pi)$$