Pre-Calculus: Lesson 4.5b Graphs of Sine and Cosine Functions p.299, #21-27 odd, #33, 35, 39, and 41.

Please complete the assignment using the "tri-fold" method (You may use www.calcchat.com to check your work):

Describing the Relationship Between Graphs In Exercises 21–28, describe the relationship between the graphs of f and g. Consider amplitudes, periods, and shifts.

21.
$$f(x) = \sin x$$

$$g(x) = \sin(x - \pi)$$
 $g(x) = \cos(x)$
 $f(x) = \cos 2x$ **24.** $f(x) = \sin 3x$

22.
$$f(x) = \cos x$$

- π) $g(x) = \cos(x + \pi)$

23.
$$f(x) = \cos 2x$$

24.
$$f(x) = \sin 3x$$

$$g(x) = -\cos 2x$$

$$g(x) = \sin(-3x)$$

25.
$$f(x) = \cos x$$

26.
$$f(x) = \sin x$$

$$g(x) = -5\cos x$$

$$g(x) = -\frac{1}{2}\sin x$$

$$g(x) = -\cos 2x$$
 $g(x) = \sin(-3x)$
25. $f(x) = \cos x$ $g(x) = -5\cos x$
 $g(x) = -5\cos x$
26. $f(x) = \sin x$
 $g(x) = -\frac{1}{2}\sin x$
27. $f(x) = \sin 2x$
28. $f(x) = \cos 4x$

28.
$$f(x) = \cos 4x$$

$$g(x) = 3 + \sin 2x$$

$$g(x) = 3 + \sin 2x$$
 $g(x) = -2 + \cos 4x$

Sketching Graphs of Sine or Cosine Functions In Exercises 33–38, sketch the graphs of f and g in the same coordinate plane. (Include two full periods.)

33.
$$f(x) = \sin x$$

34.
$$f(x) = \sin x$$

$$g(x) = -4\sin x \qquad g(x) = \sin\frac{x}{2}$$

$$g(x) = \sin \frac{x}{2}$$

35.
$$f(x) = \cos x$$

36.
$$f(x) = 2 \cos 2x$$

$$g(r) = 1 + \cos x$$

$$g(x) = 1 + \cos x \qquad \qquad g(x) = -\cos 4x$$

37.
$$f(x) = -\frac{1}{2}\sin\frac{x}{2}$$
 38. $f(x) = 4\sin \pi x$

38.
$$f(x) = 4 \sin \pi x$$

$$g(x) = 3 - \frac{1}{2}\sin\frac{x}{2}$$
 $g(x) = 4\sin \pi x - 3$

$$g(x) = 4\sin \pi x - 3$$

Graphing Sine and Cosine Functions In Exercises 39–42, use a graphing utility to graph f and g in the same viewing window. (Include two full periods.) Make a conjecture about the functions.

39.
$$f(x) = \sin x$$

40.
$$f(x) = \sin x$$

$$g(x) = \cos\left(x - \frac{\pi}{2}\right)$$

$$g(x) = \cos\left(x - \frac{\pi}{2}\right)$$
 $g(x) = -\cos\left(x + \frac{\pi}{2}\right)$

41.
$$f(x) = \cos x$$

42.
$$f(x) = \cos x$$

$$g(x) = -\sin\left(x - \frac{\pi}{2}\right) \qquad g(x) = -\cos(x - \pi)$$

$$g(x) = -\cos(x - \pi)$$