Please complete 4 problems from each section on your review (It will count as a quiz grade). Your review is due the day of the test, (A day November 30th, B day December 1st). You are responsible for this content whether or not you were in this class at the time. See **www.CalcChat.com** for worked-out solutions to odd numbered exercises.

2.6

Finding a Function's Domain and Asymptotes In Exercises 125–136, (a) find the domain of the function, (b) decide whether the function is continuous, and (c) identify any horizontal and vertical asymptotes.

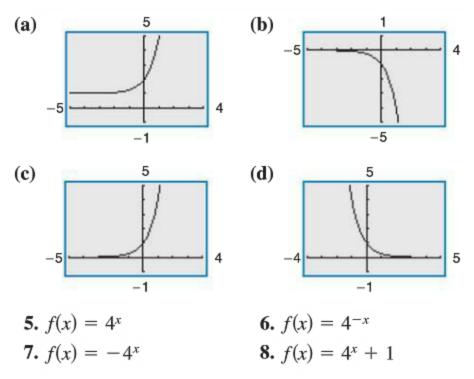
125. $f(x) = \frac{2 - x}{x + 3}$ 126. $f(x) = \frac{4x}{x - 8}$ 127. $f(x) = \frac{2}{x^2 - 3x - 18}$ 128. $f(x) = \frac{2x^2 + 3}{x^2 + x + 3}$ 129. $f(x) = \frac{7 + x}{7 - x}$ 130. $f(x) = \frac{6x}{x^2 - 1}$ 131. $f(x) = \frac{4x^2}{2x^2 - 3}$ 132. $f(x) = \frac{3x^2 - 11x - 4}{x^2 + 2}$ 133. $f(x) = \frac{2x - 10}{x^2 - 2x - 15}$ 134. $f(x) = \frac{x^3 - 4x^2}{x^2 + 3x + 2}$ 135. $f(x) = \frac{x - 2}{|x| + 2}$ 136. $f(x) = \frac{2x}{|2x - 1|}$

2.7

Finding Asymptotes and Holes In Exercises 139–142, find all of the vertical, horizontal, and slant asymptotes, and any holes in the graph of the function. Then use a graphing utility to verify your result.

139.
$$f(x) = \frac{x^2 - 5x + 4}{x^2 - 1}$$
 140. $f(x) = \frac{2x^2 - 7x + 3}{2x^2 - 3x - 9}$
141. $f(x) = \frac{3x^2 + 5x - 2}{x + 1}$ **142.** $f(x) = \frac{2x^2 + 5x + 3}{x - 2}$

Sketching the Graph of a Rational Function In Exercises 143–152, sketch the graph of the rational function by hand. As sketching aids, check for intercepts, vertical asymptotes, horizontal asymptotes, slant asymptotes, and holes.


143.
$$f(x) = \frac{2x-1}{x-5}$$

144. $f(x) = \frac{x-3}{x-2}$
145. $f(x) = \frac{2x^2}{x^2-4}$
146. $f(x) = \frac{5x}{x^2+1}$
147. $f(x) = \frac{2}{(x+1)^2}$
148. $f(x) = \frac{4}{(x-1)^2}$
149. $f(x) = \frac{2x^3}{x^2+1}$
150. $f(x) = \frac{x^3}{3x^2-6}$
151. $f(x) = \frac{x^2-x+1}{x-3}$
152. $f(x) = \frac{2x^2+7x+3}{x+1}$

3.1

Evaluating Exponential Functions In Exercises 1-4, use a calculator to evaluate the function at the indicated value of x. Round your result to four decimal places.

1.
$$f(x) = 1.45^x$$
, $x = 2\pi$ **2.** $f(x) = 7^x$, $x = -\sqrt{11}$
3. $g(x) = 60^{2x}$, $x = -1.1$ **4.** $g(x) = 25^{-3x}$, $x = \frac{3}{2}$

Library of Parent Functions In Exercises 5–8, match the function with its graph. [The graphs are labeled (a), (b), (c), and (d).]

Graphs of $y = a^x$ and $y = a^{-x}$ In Exercises 9–12, graph the exponential function by hand. Identify any asymptotes and intercepts and determine whether the graph of the function is increasing or decreasing.

9. $f(x) = 6^x$	10. $f(x) = 0.3^x$
11. $g(x) = 6^{-x}$	12. $g(x) = 0.3^{-x}$

Graphing an Exponential Function In Exercises 13–18, use a graphing utility to construct a table of values for the function. Then sketch the graph of the function. Identify any asymptotes of the graph.

13. $h(x) = e^{x-1}$	14. $f(x) = e^{x+2}$
15. $h(x) = -e^x$	16. $f(x) = 3 - e^{-x}$
17. $f(x) = 4e^{-0.5x}$	18. $f(x) = 2 + e^{x+3}$

Finding the Balance for Compound Interest In Exercises 19 and 20, complete the table to determine the balance A for \$10,000 invested at rate r for t years, compounded continuously.

t	1	10	20	30	40	50
Α						

19. r = 8% **20.** r = 3%

- **21.** Economics A new SUV costs \$32,000. The value V of the SUV after t years is modeled by $V(t) = 32,000 {\binom{3}{4}}^{t}$.
 - (a) Use a graphing utility to graph the function.
 - (b) Find the value of the SUV after 2 years.
 - (c) According to the model, when does the SUV depreciate most rapidly? Is this realistic? Explain.
- 22. Radioactive Decay Let Q represent the mass, in grams, of a quantity of plutonium 241 (²⁴¹Pu), whose half-life is 14 years. The quantity of plutonium present after t years is given by $Q = 50(\frac{1}{2})^{t/14}$.
 - (a) Determine the initial quantity (when t = 0).
 - (b) Determine the quantity present after 10 years.
 - (c) Use a graphing utility to graph the function over the interval t = 0 to t = 50.

End Behavior (Limit Notation)

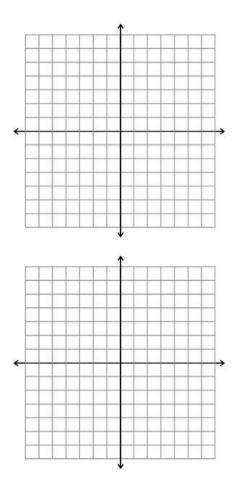
Find the end behavior (in limit notation) for each of the following functions:

- 1. $f(x) = x^4 4x^2 + x$
- 2. $f(x) = 6x^3 + 1$
- $f(x) = -x^4 + 1$
- 4. f(x) = (x-1)(x-3)(x-5)

5.
$$f(x) = -(x-4)(x-3)(x-1)^2$$

6.
$$f(x) = -2(x+3)^2(x+1)^2$$

State the equations of the parent function, graph, and find the end behavior (using limit notation).


7. Parent functions: Constant

Equation: _____ End behavior:

Domain Range:

8. Parent functions: Linear Equation: _____ End behavior:

> Domain: Range:

9. Parent Function: Quadratic

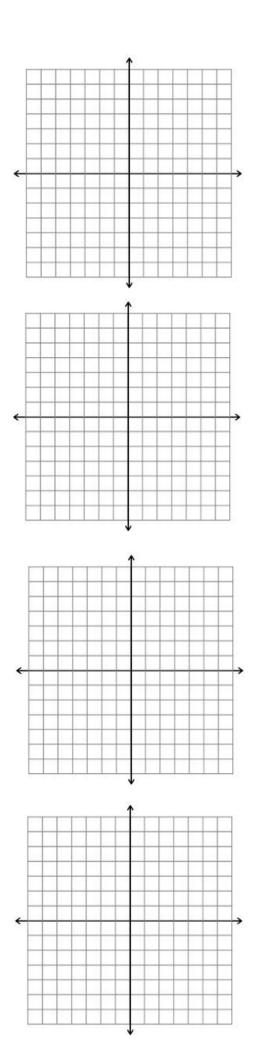
Equation: _____ End behavior: Domain: Range:

10. Parent Function: Cubic

Equation: _____ End behavior:

Domain: Range:

11. Parent Function: square root Equation: _____


End behavior:

Domain: Range:

12. Parent Function: Rational

Equation: ______ End behavior:

Domain: Range:

